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Abstract
This paper addresses whether we can improve equating results if we know

the variable that accounts for all systematic differences between equating
populations and use it as either an anchor in an anchor test design or as a variable
on which to match equating samples. The sample invariant properties of four
anchor test equating methods (Tucker and Levine equally reliable linear models,
chained equipercentile and frequency estimation equipercentile models) under
three sampling conditions, "representative", "matched on equating test", and
"matched on selection variable" are examined. The "selection variable" is defined
as the variable or set of variables along which subpopulations differ. In addition to
being used for matching of subpopulations, the selection variable was used as an
anchor for the four equating methods, and compared to equatings in which the
equating test served as the anchor. All equatings were performed with either real
Scholastic Aptitude Test (SAT) populations or with data drawn from simulated
pseudopopulations which differed from their original real SAT populations on the
basis of the selection variable. The tests used were the verbal and math portions of
two forms of the SAT. The criteria for accuracy were equivalent-groups
equipercentile equatings based on OW and new form subpopulations of over 115,000
test takers.

Results showed that matching on the selection variable improved accuracy
over matching on the equating test for all methods. Compared ,pith the
representative sample equatings, Tucker and frequency estimation results improved
with matching on the selection variable; chained equipercentile and Levine results
were similar under these two sampling conditions. Results with the selection
variable as an anchor were good for both the Tucker and frequency estimation
methods; chained equipercentile and Levine results were quite unacceptable as
anticipated since use of the selection variable math scores for the verbal equatings
and verbal scores for the math equatings violated assumptions of these models.

The positive results obtained for use of the selection variable as a matching
variable or anchor test (for some methods) suggest that future research into the
reasons test talkers select certain test administrations may lead to improved test score
equating practices.
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Using the Selection Variable for Matching or Equating

Nancy K Wright and Neil J. Dorans
Educational Testing Service

Recent studies on the sensitivity of equating methods to sampling and
subpopulation differences suggest that no currently used equating method that
employs*an anchor test design is always able to achieve sample and subpopulation
invariant equating results. When samples from different subpopulations vary along
a dimension that differs from that measured by the equating test true ability or
another set of variables some equating methods do not adjust properly for sample
differences and hence differences in test difficulty. This paper is a follow-up
investigation to a set of papers that examined the efficacy of using equating test
scores to match equating samples in order to improve the performance of different
equating methods that use an anchor test design in which the equating samples are
quite dissimilar in ahlity. The present study uses data from one of these papers, the
Livingston, Dorans and Wright (1990) simulation study, where the selection
variable is known, to assess whether matching with or equating with the selection
variable can be used to produce acceptably invariant equatings.

First, relevant previous research is reviewed in order to set the stage for the
present investigation. Then, the purpose of the present study is described. Next, the
equating methods employed in the present study are described. The design of the
present study is then presented with particular emphasis placed on what it adds to
the previous research. Results are presented, and finally discussed.

Background and Purpose
Background

Interest in score equating procedures, both from a technical and practical
point of view, has been increasing steadily in recent years. Brennan (1987), in the
lead article of a 1987 issue of Applied Psychological Measurement, a substantial
portion of which was devoted to Problems, Perspectives, and Practical Issues in
Equating, gave two reasons for this surge of interest. First, there has been an
increase in the number of testing programs that use multiple editions of the same
test, prompting an increased awareness that equating is needed to ensure that scores
are equitable across different editions of the test. Second, test publishers and
developers have had to reference the role of score equating in a climate of enhanced
public scrutiny over standardized testing. In addition, research in equating has
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focused on improved equating methods, particularly, item response theory (IRT)
methods. Much of this IRT research is summarized in Skaggs and Lissitz (1986).
The Cook and Petersen (1987) article in the aforementioned AME special issue also
included a review of studies about several different equating methods including
IRT. References to more recent equating research can be found through the scaling,
norming and equating chapter by Petersen, Ko len, and Hoover (1989) in the most
recent edition of Educational Measurement (Linn, 1989). Most of this earlier
research examined how well equating methods performed with intact
representative samples.

Matching of equating samples initially was viewed as a potential solution to
the chronic problem of diverging equating results obtained under different equating
methods when data are collected in an anchor test design in which the old form and
new form equating samples differ substantially (Lawrence & Dorans, 1988). At the
1989 annual meeting of the AERA, a symposium, entitled Selecting Samples for
Equating: To Match or Not to Match, focused on how different equating methods
perform under different sampling conditions: representative or matched samples.
That symposium evolved into a special issue of Applied Measurement in Education
(Dorans, 1990a). Since the present study is a follow-up to research in that
symposium / special issue, those studies will be summarized here.

In the lead article, Dorans (1990b) described the equating methods used and
sampling designs employed by the empirical studies in that special issue. Four
requisites for equating were listed and the invariance of equating functions requisite
was identified as the focus of the special issue. Descriptions were given of the
Tucker equating method, the Levine equally reliable and unequally reliable
equating methods, the chained equipercentile equating method, the frequency
estimation equipercentile and linear equating methods, and the three parameter
logistic (3PL) item response theory true-score equating method. All these methods
employ data collected within an anchor test design. The description of each method
focused on assumptions made by that method, included some basic mathematical
expressions associated with the method, and described procedural aspects of the
method. Similarities and differences among methods were also discussed. Three
types of sampling designs were described: representative sampling; new-form
matched sampling (old form sample to new form sample); and reference or target
matched sampling (old and new samples to a reference population). Some of the
practical mechanics of matching were discussed.
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Using data from several administrations of the Scholastic Aptitude Test
(SAT), Lawrence and Dorans (1990) addressed the sample invariant properties of
five anchor test equating methods across two sampling conditions to see which
methods produced the most consistent results. In the representative sample
condition, equatings were based on old form and new form samples that differed in
ability; in the new form matched sample condition, the old form sample was
selected to match the anchor test score distribution of the new form sample. Results
for the item response theory method differed for representative and matched
samples, as did results for the Levine equally reliable and chained equipercentile
methods. Results based on the Tucker observed-score method and frequency
estimation equipercentile equating method were found to be essentially invariant
across representative and new form matched sample conditions. Results for the
five equating methods tended to converge under the new form matched sample
condition. Tentative explanations for the findings were offered.

Eignor, Stocking and Cook (1990) employed a simulation model to study the
invariance effect. Two independent replications of a sequence of simulations were
carried out to evaluate the performance of four anchor test equating methods under
two sampling design conditions. Since the data were generated according to an item
response theory model, it was predicted that the IRT equating method and the true-
score Levine equally reliable equating method would be less affected by sample
differences, and the results confirmed this finding. The authors advised against
matching on equating tests for the IRT, Levine equally reliable and chained
equipercentile methods.

Schmitt, Cook, Dorans and Eignor (1990) examined the results of equating
two parallel editions of an Achievement Test in Biology using different equating
methods under different sampling strategies. In addition to representative samples
and new form matched samples, they studied reference or target matched sampling.
The criterion equating was a Tucker equating using representative samples from
two populations that were very close in ability. They found that matching on a set
of common items provided greater agreement among the results of the various
equating procedures than was obtained under representative sampling. In addition,
for all equi..ing procedures, the results of equating with samples matched on
common item scores agreed more closely with the criterion equating than did
results from representative samples. Matching to an reference target population
produced agreement among methods, but did not agree as closely with the criterion
equating as matching to the ri -w form on the basis of common item scores. The
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equating models least affected by differences in new and old form sample abilities
were the Tucker and frequency estimation equipercentile models, and the procedure
most affected by ability differences was the IRT procedure. (Cook, Eignor & Schmitt
(1989) examined one edition of four other Achievement Tests and failed to replicate
the superiority of matched sample equatings.)

Livingston, Dorans and Wright (1990) examined five equating methods
under twu sampling conditions using data specially constructed from a national
administration of the SAT. The criterion equating was based on an equivalent-
groups design equating involving more than 115,000 students taking each of two
editions of the SAT. Much of the inaccuracy in the equatings could be attributed to
overall bias. The results for all equating methods in the matched samples were
similar to those for the Tucker and frequency estimation methods in the
representative samples: these equatings made too small an adjustment for the
differ !nce in the difficulty of the test forms. In the representative samples, the
chained equipercentile method showed a much smaller bias. The IRT and Levine
equally reliable methods tended to agree with each other and were inconsistent in
the direction of their bias.

This set of papers could be viewed as a psychometric drama about the efficacy
of matching, which swayed from a "yes" based on the Lawrence and Dorans (1990)
study to a definite "no" according to Eignor, Stocking and Cook (1990), back to a
"yes" by Schmitt, Cook, Dorans and Eignor (1990), then back yet again to "no"
according to Livingston, Dorans and Wright (1990). Kolen (1990) and Skaggs (1990)
examined these articles, synthesized them, posed questions, and discussed their
implications for current and future equating practices. In addition to providing
critiques of the individual articles, both Kolen and Skaggs looked for universal
themes that could be extracted from this psychometric drama.

Skaggs (1990) concluded that Tucker and frequency estimation are not affected
by matching on the equating test, while Levine, IRT and chained equipercentile
equating are affected. Skaggs also pointed out that the conclusions one might draw
about the efficacy of matching depend on the criterion used. If consistency among
methods is the criterion, then matching achieves that consistency. Skaggs also
raises the issue of multidimensionality and wonders how it may have affected
different methods in the different studies. Finally, he concludes that we need to
know more about examinees and how they end up in samples. Until we know that,
"...matching appears to be a risky business."



7

Kolen (1990) indicated that there were three general research findings that
underlie this; set of studies. First, when equivalent groups of examinees are given
carefully constructed test forms, the equating relationship is invariant with respect
to equating populations. Second, when an anchor test is used in which the anchor
is a miniature of the total test form and is administered to groups taking the old and
new form who are similar to each other, then equating methods tend to give
similar results. Third, when an anchor test is used id the groups taking the old
and new forms are quite different, then any equating method may give poor results.
A major motivation for these related studies was an attempt to improve anchor test
equatings when the old form and new form groups were quite dissimilar via
matching on the equating test. Kolen concludes from these studies that matching

on the equating test does not result in more accurate equating. He also states that
matching on other variables is worthy of future research.
Purpose

This study attempts to begin to address the issue of whether matching on
something other than the equating test can produce more accurate equating results.
Livingston, Dorans and Wright (1990) offered an avenue for future research: if

matching on the anchor score is not a good idea, a promising variable on which to

match equating samples might be the selection variable or set of variables that
causes the new and old form groups to differ systematically. In practice, we don't
know the selection variable, but we might be able to model it. A "propensity score"
(Rosenbaum & Rubin, 1985), a linear combination of all the variables we can
measure that best discriminates between the two populations, may be a promising

way of modelling the self-selection process. Collecting, constructing and matching

on propensity scores is a more complicated procedure than matching on anchor
scores alone. As a preliminary step before studying the use of propensity scores in

the equating process, this study examines whether a known selection variable, such

as the variable actually used to create populations in the Livingston, Dorans and
Wright (1990) study, can produce acceptable equating results if used as a matching

variable or as an anchor score distribution in the equating process. It assesses
whether knowledge of the process underlying the self-selection of students to
administrations can be used to improve equating results with certain -quating

models. If knowledge of the self-selection process can be used to improve equating

results, then we can focus future research efforts on attempting to model self-

selection.
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The Equating Methods Used in Our Anchor Test Design
Anchor Test Design

The old form equating sample, which takes the old form (X), and the new
form equating sample, which takes the new form (Y), can be related to each other in
one of three ways: (1) the old form sample and new form sample are identical, the
"single-group" design; (2) the old form and new form samples are statistically
exchangeable, the "equivalent-groups" design; (3) the old and new form samples
are T of statistically exchangeable, the "non-equivalent-groups" design (Angoff, 1984;
Petersen, Kolen & Hoover, 1989).

In the non-exchangeable-groups design or anchor test design, one group takes
the old form and another group takes the new form, but the samples are not
selected to ensure equivalent test performance. Ordinarily, the equating data come
from different test administrations. Equating tests or anchor tests are essential for
designs in which the old form and new form samples are not exchangeable. This
paper uses this third data collection design.
Equating Methods

In this study, four equating methods were employed: chained equipercentile
equating, frequency estimation equipercentile equating, Tucker linear equating and
Levine equally reliable equating.

Equipercentile equating methods. The equipercentile equating function, e(y),
equates test Y to test X on some population P if test X and e(y) have the same
cumulative frequency distribution on population I- For obvious reasons,
equipercentile equating is also referred to as distribution matching. Equipercentile
equating is based on the definition that the score scales for two tests are comparable
if the score distributions for the two tests are identical in shape for some population
P (Braun & Holland, 1982).

Equipercentile equating can be viewed as a two-stage process (Kolen, 1984).
First, the relative cumulative frequency distributions are tabulated or plotted for the
two forms to be equated. Second, equated scores are obtained from these relative
cumulative frequency distributions. A cumulative distribution function maps
scores onto relative frequencies which have a maximum of 1 and a minimum of 0.
An inverse cumulative distribution function maps frequencies onto scores.

One equipercentile method that uses an equating test is what Angoff (1984,
pg. 116) refers to -is design V, what Braun and Holland (1982, pp. 39-42) call equating
two tests through a third test, and what we refer to as the chained equipercentile
method. In subpopulation P, test Y is equated to equating test V such that equated
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scores refer to the same percentile rank of examinees in P. In subpcpulation Q, test
X is equated to equating test V such that equated scores refer to the same percentile
rank of examinees in Q. Scores on X and Y are said to be equated if they correspond
to the same score on anchor test V. Note that two separate equatings are actually
employed in two different subpopulations and that test X and Y are never directly
equated in a single population. For this method to make sense from an equating
point of view, one must assume that the new form sample and the old form
sample are both representative of a common population, i. e., P and Q are identical.
In practice, however, this method is used even when P and Q are not identical.

Another equipercentile equating procedure that uses an anchor test is called
frequency estimation (Angoff, 1984 p. 113). This procedure attempts to simulate a
situation in which bcth X and Y are taken by a single or exchangeable groups. Data
from P and Q on V are combined and used to estimate the frequencies on X and Y
that this combined group would have obtained had they taken both X and Y. This
procedure estimates, for each form, the joint distribution of scores on that form and
the anchor test. This joint distribution is estimated for a synthetic population, R,
with a specified distribution of scores on the anchor test, typically the distribution in
the combined :"Id form and new form) sample. The key assumption is that the
conditional distribution of scores on the new form (Y), given the score on the
anchor rest (V), is the same in the old form sample (where it is unobserved) as in
the new form sample (where it is observed). The method makes a similar
assumption for the old form (X). Summing over scores on the anchor test yields
estimated distributions of scores of the combined sample on the new form and on
the old form. Once these frequencies have been estimated, a standard equipercentile
equating of Y to X is performed to obtain e(y) on this combined population.

Linear equating methods. Linear equating can be viewed as a very smoothed
version of equipercentile equating in which only the first two moments of the score
distributions of X and Y on P are matched. In linear equating, a transformation is
found such that scores on X and Y are said to be equated if they correspond to the
same number of standard deviation units above and below the mean in P.

There are a variety of linear equating models that employ an equating test.
The volume edited by Holland and Rubin (1982) contains several chapters that
describe these various models; in particular, chapters by Angoff (1982), Petersen,
Marco and Stewart (1982), and Potthoff (1982) should be consulted. Two of the more
popular models are the Tucker model and the Levine equally reliable model.
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The Tucker linear equating model assumes that the regression of total score Y
onto the equating test V is linear and homoscedastic, and that this regression, which
is observed in the sample that took test Y with V, also holds in the sample that took
test X with V. A similar set of assumptions is made about the regression of X on V.

The Levine equally reliable linear equating model assumes that the true
scores on Y and V are perfectly related, and that the ratio of the standard deviation
of true scores on Y to the standard deviation of true scores on V is the same in the
observed group P and the synthetic population R. In addition, it assumes that the
intercept of the regression line relating true scores on Y to true scores on V is the
same in P and R. Further it assumes that the standard error of measurement for Y
and for V is the same for groups P and R. A similar set of assumptions are made
about true sco:es on X and V in the observed group Q and R. A common
misconception holds that the Levine equally reliable equating method is a true score
equating method. It is not. It estimates observed score means and standard
deviations using assumptions about true score regressions and standard errors of
measurement. Hence, it is an observed score equating method based on
assumptions about true scores.

Design of Study
Data Source

The tests used in this study and in Livingston, Dorans and Wright (1990)
were two forms of the verbal and mathematical portions of the SAT administered
concurrently at a large national administration by alternating or "spiraling" the two
forms. The population of test takers for both studies was restricted to high school
juniors and seniors, the target population for the SAT and the one used in the
operational equatings of the tests. A total of approximately 236,000 juniors and
seniors took the forms: 119,000 examinees took one form and 117,000 the other. The
equipercentile relationship in the raw score distributions on these two forms for
populations this large could be expected to represent the true equating relationship
as nearly as possible. The raw-to-scale version of this equipercentile equating was
used as the criterion against which the various experimental equatings were
evaluated for accuracy.

For the purposes of the studies one of the forms was assigned to be the "new
form" and the other the "old form." No anchor was needed to equate these forms
since groups administered two forms by alternating booklets could be considered
random groups from the same population. However, four equating tests in the
form of external common-item sets two verbal and two math were

13
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administered to random subgroups on each of the two forms for the purpose of
equating the forms to past and future editions of the SAT. The common-item
equating sets were each parallel in content and length to one of the operational
sections of the verbal or math operational tests. The equating tests were
systematically spiraled in test booklets to form eight stratified random subgroups of
approximately 8,000 students each. Each subgroup was smaller than one-eighth of
the population because pretests rather than equating tests were administered to
some students.
Generation of Pseudopopulations

Data simulated for the Livingston, Dorans and Wright (1990) study were
utilized in the present study. The following describes the data simulation:

....The four anchor tests made it possible to create, artificially, several
anchor equating situatior in which the populations of students taking
the old form differed systematically in ability from the populations taking
the new form. Most important, in each of these anchor equating
situations the true equating relationship in the target population was
known (or rather, to be strictly correct, this relationship could be very
precisely estimated). Each equating situation consisted of a pair of
populations linked by an anchor test. The new-form population in each
pair was simply the subpopulation of students taking the new form and
the anchor test. Each old-form population was actually a

pseudopopulation selected to be of systematically lower ability than the
new form population. The old-form pseudopopulation in each pair was
selected from the subpopulation of students taking the old form and the
anchor test, by removing a portion of the higher ability students. The old-
form pseudopopulations for equating the Verbal test were selected on the
basis of their Math scores, to avoid selecting on either the anchor
(equating) score or the score to be equated. Similarly, the old-form
pseudopopulations for equating the Math test were selected on the basis of
their Verbal scores.

Each new-form population was paired with two different old-form
psedopopulations of different ability levels. One of the old-form
psuedopopulations was selected to have a mean ability level
approximately 0.2 SD lower than the new-form psuedopopulation. This
psuedopopulation is referred to as the 0.2 population. The other old-form
pseudopopulation was selected to have a mean ability level approximately

14
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0.4 SD lower than the new-form population. This old-form
pseudopopulation is referred to as the 0.4 population.1 The 0.2
populations varied in size from 6,148 to 6,658 students; the 0.4
populations varied in size from 4,367 to 4,887. (p. 76-78).

The .2 SD condition is often seen in practice with SAT data, while the .4 SD
condition is seen on occasion.
Samples for Equating

The four new form samples for all experimental equatings in this study
andin Livingston, Dorans and Wright (1990) consisted of approximately 3,000 test
takers each, selected by a technique called "spaced random sampling" from the full
new form equating test subpopulations. Spaced random sampling involves
dividing the full group into blocks or "spaces" of equal size and randomly selecting
an equal number from each block so that the desired sample size is obtained. Eight
old form samples were selected in like manner, four from the "0.2 populations" and
four from the "0.4 populations." These twelve samples eight old and four new - -
will be referred to as representative samples.

In addition, two sets of matched samples were selected. The first set, selected
for and used in Livingston, Dorans and Wright (1990) consisted of four old form
samples of approximately 3,000 test takers each from the "0.2 populations," each
matched to the appropriate new form representative sample using the common-
item equating test as a stratifying variable. It was not possible to select perfectly
matched samples in any of these four cases; that is, the number in each sample and
the equating test mean for each old form group varied slightly from the
corresponding new form sample.

A second set of four matched old form samples from the "0.2 populations"
was selected for the present study using the selection variable distribution the
variable used in the simulation of the pseudopopulations -- in each new form
sample as the stratifying variable. Math raw scores which had been transformed to

1The correlation between Verbal and Math scores is approximately .70. A 0.2
population for equating Verbal scores was selected by specifying a distribution
Math scores that had a mean (0.2/.70) standard deviations below that of the full old-
form population. The resulting "population" had a mean Verbal score
approximately 0.2 SD below that of the full population. A similar procedure was
used for selecting the other old-form pseudopopulations.
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the College Board 200-to-800 scale were used to select verbal matched old form
samples; similarly, verbal scaled scores were used in the selection of math matched
samples. In the process of creating the 0.2 pseudopopulations too many high-ability
test takers had been removed to allow for full! matched samples of 3,000. Instead,
proportional matching was performed: approximately, two-thirds of the cases at
each score level on the stratifying variable were selected for a total sample size of
approximately 2,000.

For Livingston, Dorans and Wright (1990) matched old form samples were
selected from the "0.4 populations," matching on the new form equating test
distribution. For the present study an attempt was made to select proportional
samples from the "0.4 populations" matched on the new form selection variable
distributions. However, it would have been necessary to decrease sample sizes to
750, too small a number for stable equating results in this situation.

The eight randomly occurring equating test subpopulations of approximately
8,000 test takers each four old form and four new form groups also served as
equating samples. These subpopulations are labeled "0.0 populations" in tables and
figures.

Figure 1 presents relationships among populations and samples used in the
Livingston, Dorans and Wright (1990) study. Additional samples selected for this
follow-up study are shown in boldface.

Insert Figure 1 about here

Choice of Anchor
The anchor test used in the equatings in Livingston, Dorans and Wright

(1990) and the present follow-up study are as follows:
Livingston, Dorans and Wright (1990):

Representative samples
(0.0, 0.2 and 0.4 populations)

Samples matched on equating test
(0.2 and 0.4 populations)

Present study:
Representative samples

(0.0, 0.2 and 0.4 populations)
Samples matched on selection variable

(0.2 population)

1v

Anchor Test
Equating test

Equating test

Anchor Test
Selection variable

Equating test
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The anchor test used to link the old and new form samples in all equatings
performed for the Livingston, Dorans and Wright (1990) study was the external
common-item set the equating test. Newly performed equatings for the present
study used the equating test as the anchor only in the equatings involving the four
old form samples from the "0.2 populations" which had been matched to the new
form samples using the selection variable score distributions.

For the equating situations in the present study using representative samples
from the old form "0.0, 0.2 and 0.4 populations", the anchor test was the selection
variable operational math scores for the verbal equatings and operational verbal
scores for the math equatings. Raw scores could not be used as an anchor in these
equatings because the old and new form groups had taken different operational
tests. Instead, scores expressed on the College Board 200-to-800 scale were used.
These scores functioned as a common anchor test because, once raw scores have
been transformed to a common scale, the resulting scaled scores at a given score
level (e.g. 500) on two forms can be considered interchangeable.
Criteria for Accuracy

Two criteria for evaluating equating results are described in this section. The
present study uses the same approach for evaluating equatings as Livingston,
Dorans and Wright (1990). The primary criterion for judging the overall accuracy of
each equating was the root mean-weighted square difference (RMWSD) of the
equated scores for the full new form population from their equated scores
determined by the target equating. The RMWSD is computed by the formula:

RMWSD = [(En(y)i(x(y)-X(y))2)/En(y)] .5

where n(y) is the number of examinees with raw score y on the new form, X(y) is
the corresponding exact (unrounded) scaled score on the old form as determined by
the target equating, and x(y) is the corresponding exact (unrounded) scaled score on
the old form as determined by the other equating to be compared with the target
equating. The summation is over the raw score levels on the new form. The
equated scores are expressed on the College Board 200-to-800 scale, and the RMWSD
statistics are in terms of this scale.

A secondary criterion for evaluating the accuracy of each equating was its bias.
Bias may be described as the tendency for the equated scores to be systematically too
high or too low. The overall bias statistic is an average value for the new form
population. The bias of an equating is computed by the formula:

ti
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Bias = (En(y){(x(y)-X(y)))/En(y) ,

where the symbols have the same meaning as in the formula for the RMWSD.
Negative bias in one part of the score range may cancel out positive bias in another
part of the score range. Values of the RMWSD and bias statistics of five or more are
considered to indicate problematic equating results.

Results
Emphasis in this section is on the relative accuracy of equatings within

method, comparing results for the present study with results from Livingston,
Dorans and Wright (1990). First, relative accuracy will be presented for equatings in
which the common-item equating test, used in the former study as the anchor test,
has been replaced with the scaled selection variable. Next, results in samples
matched on the selection variable are compared with the accuracy within method of
results under two sampling conditions, matched on the equating test and
representative, studied in Livingston, Dorans and Wright (1990). The reader is
referred to Livingston, Dorans and Wright (1990) for a full discussion of the accuracy
of various combinations of five equating methods and the latter two sampling
conditions.
Equating Through the Selection Variable

The right side of Table 1 shows the bias and RMWSD statistics expressed on
the College Board 200-to-800 scale for each of the equatings performed for the
present study in representative samples using the selection variable as anchor.

Contrasted on the left side of Table 1 are bias and RMWSD values for equating
methods in which the equating test was used as anchor. Information on the left is
from the Livingston, Dorans and Wright (1990) study. All indices were calculated in
the full new form population, using the random-groups equipercentile equating in
the full population as the criterion.

Insert Table 1 about here

Four equating methods are presented from the former study: Tucker, Levine,
chained equipercentile and frequency estimation equipercentile. Only two equating
methods, Tucker and frequency estimation, are shown for the equatings through
the selection variable for the present study. Levine and chained equipercentile
equatings were also performed. For these two methods, large values for bias and

1.8
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RMWSD resulted some in excess of 50 scaled score points. Figure 2 shows the
conversion results in the "mb 0.4 population" for all four equating methods, using
the selection variable as anchor, compared with the criterion equating. While the
Tucker and frequency estimation conversions follow the criterion closely, Levine
and chained equipercentile diverge from the criterion in the top half of the scale by
as much as 80 and 100 points, respectively clearly unacceptable results.

Insert Figure 2 about here

The values in Table I are presented graphically in Figures 3a to 5d. Figures 3a
to 3d compare the accuracy of four equating methods using the common-item
equating test with two methods using the selection variable, sampling in the old
form "0.4 populations." Each plot presents the results for one old form sample,
with the set of four representing replications. Each of the six bars in a plot shows
the accuracy of a particular combination of equating method and anchor test type, as
indicated by the RMWSD statistic the height of the bar. The shaded solid portion
of the bar is the overall bias in the equating, which is always less than the RMWSD.
Black indicates negative bias, while gray shading indicates positive bias. In the
Livingston, Dorans and Wright (1990) study, Tucker and frequency estimation
equating results tended to duster and to exhibit unacceptably large negative bias in
the 0.4 samples. In three of the four_ samples in the current study, these two
methods also tended to be similar in accuracy. In all four replications the accuracy
of Tucker results was improved, in some cases rather dramatically, when the
selection variable replaced the equating test. For the frequency estimation method,
accuracy was improved in three of the four cases. In the fourth, RMWSD values
were about equivalent, but the overall bias was slightly smaller. In the present
study, Tucker and frequency estimation results are about as accurate, in general, as
chained equipercentile and Levine results from the former study.

Insert Figure 3 about here

Figures 4a to 4d present results for the same equating methods and anchor
test types in the "0.2 populations." In general, more accurate equatings across
method and anchor test can be observed in these samples, but there are some
exceptions. As in the "0.4" equatings, Tucker and frequency estimation results tend
to cluster when either the equating test or the selection variable serves as anchor.

19
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The improvement within method of using the selection variable is both less
dramatic and less clear within these samples. Only two of four equatings were more
accurate for both Tucker and frequency estimation with use of the selection variable.
However, in three of four cases, the new Tucker and frequency estimation were
within the 5-point accuracy band and clustered with the Levine results. In the mb
sample, Tucker and frequency estimation ,through the selection variable were less
accurate than any of the methods using the equating test.

Insert Figure 4 about here

Equating results for the full randomly equivalent subpopulations are
displayed in figures 5a to 5d. All equatings performed in these groups are acceptably
accurate regardless of method or anchor test. In other words, when the samples in
which the equatings are to be performed are close in ability, little adjustment is to be
made, and most methods work well regardless of anchor used. Differences observed
in these equatings are likely due to sampling variability.

Insert Figure 5 about here

Matching Through the Selection Variable
Table 2 displays accuracy values for four equating methods across three

sampling conditions in samples from the "0.2 populations." Values for two linear
and two curvilinear equating methods after matching on the selection variable are
shown in the middle portion of Table 2. To the left are results after matching on the
equating test; at the right, results in the representative samples are shown. Data for
the two sampling conditions shown on the left and right come from the Livingston,
Dorans and Wright (1990) study; data in the middle four columns were generated
for the present study. It should be noted that only two equating methods are
included for the matched-on-equating-test sampling condition: linear and
equipercentile. This is because the Tucker and Levine linear methods and the
chained and frequency estimation equipercentile methods converge in each case to a
single equating result when perfect matching has been performed with the equating
test.

Insert Table 2 about here

ti r. 0
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Figures 6a to 6d display data from Table 2. Comparison of the linear
equatings under the two matching conditions (R and V versus M) show more
accurate results in all four samples when matching has been performed with the
selection variable. Results for equipercentile equatings nder the two matching
conditions (D and Y compared with E) are mixed, with the selection variable clearly
improving the results in only one sample, "ma." In the other three samples, the
RMWSD values are similar or slightly larger for the selection-variable matched
rest Its, whereas the bias values are smaller.

Insert Figure 6 about here

Comparisons within each equating method between the representative
andmatc.hed-on-selection-variable conditions show the verbal equatings to be about
as accurate regardless of sampling condition, with all results in the acceptable range.
The math equatings exhibit a somewhat different pattern. Tucker and frequency
estimation results are improved under matching in the "ma" sample, but are about
the same in the "mb" group. For the chained equipercentile method,
representative-sample results were considerably more accurate in the "mb" sample,
but similar in the "ma" sample.

Discussion
This research appears to confuse the issue about whether or not to match.

The series of papers that motivated this study presented both positive and negative
results with respect to matching on the equating test. The observational studies
(Lawrence & Dorans, 1990; Schmitt, Cook, Dorans & Eignor, 1990) presented
empirical support, while the simulation studies (Eignor, Stocking & Cook, 1990;
Livingston, Dorans & Wright, 1990) presented results that questioned the efficacy of
matching on the equating test. The present paper contains both positive and
negative results with respect to matching. The negative results appeared in the
Livingston, Dorans and Wright (1990) study: matching on the equating test hurts
the performance of the item response the iry, Levine and chained equipercentile
equating methods, while it neither helps nor hurts the Tucker and frequency
estimation equating methods. The reason that Tucker and frequency estimation are
invariant with respect to matching on the equating test is that the mathematical
assumptions underlying these methods are consistent with the logic of matching on
the equating test. Since they are, in effect, statistical ways of matching, Tucker and
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frequency estimation obviate any need to match on equating test scores. So

matching on equating test scores should be discontinued.
The positive results with respect to matching that were found in the present

study were that matching on the selection variable, if known, is a correct thing to
do. The resul s for both Tucker and frequency estimation were improved when
equating was performed on samples matched with respect to the selection variable
that had been used to construct the psuedopopulations in the Livingston, Dorans
and Wright (1990) simulation study. In fact, by matching on the selection varaible,
the effects of selection which had caused poor results for the Tucker and frequency
estimation methods obtained using the equating test as either an anchor or
matching variable were counteracted. In addition, matching on the selection
variable did not have a detrimental effect on the performance of die Levine and
chained equipercentile methods, prolucing results comparable to the results
obtained under representative samples for these methods (see Table 2). Hence, the
data suggest that matching on the selection variable, if known, as it was in this
study, can improve equating results for some methods, e.g. those with a statistical
foundation in selection theory: Tucker, frequency estimation, and, perhaps, the
kernel equating method (Holland & Thayer, 1989). In addition, matching on the
selection variable did not hurt the performance of any method in this study, the
way that matching on the equating test did in Livingston, Dorans and Wright (1990).

Use of the selection variable as an anchor provided the most interesting
results. Both the Tucker and frequency estimation procedures performed better, in
most cases, with the selection variable as an anchor than they did when the
common item equating test served as the anchor. It seems rather absurd that a
verbal scaled score would be a better anchor for equating two math tests than would
a mini-test in math. It is absurd until you think about it and realize that both the
Tucker and frequency estimation methods, in essence, assume that the anchor they
are using is, in effect, the selection variable, the variable along which the old and
new form samples differ. In the math equatings, this selection variable was the
verbal scaled score; for verbal, the selection variable was the math scaled score.

In contrast to the absurdly good performance of Tucker and frequency
estimation, use of the selection variable as an anchor produced unreasonable and
abominable results for Levine and chained equipercentile. (Comparably poor
results would probably have occurred for IRT as well.) The poor results for Levine
are easy to explain: The true score correlation between verbal and math is not unity,

which id what the Levine model assumes about the true score correlation between

2
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the anchor test and the test to be equated. Chained equipercentile does poorly
because die scaling relationship between verbal and math across psuedopopulations
differs systematically. The simulated psuedopopulations were constructed in such a
way that diffexences between populations at the mean along the selection variable
were always larger than differences at the mean. of the score to be equated. The
simulation ino4del in essence constructed data that the chained equipercentile model
could not deal with if the selection variable was to be used as an anchor. Likewise,
the simulation model had constructed data that prevented the Tucker and
frequency estimation methods from obtaining reasonable results with the
traditional equating test anchor.

The importance of constructing realistic simulations is one lesson to learn
from this study. Livingston, Dorans and Wright (1990) went out of their way to
avoid biasing results in favor of matching on the equating test by using a verbal
score as a selection variable to set up psuedopopulations for math equatings, and
vice versa for verbal equatings. Using the same data, we have shown matching to
work well if snatching occurs on the selection variable. Matching works, if you
match on. the right thing. We also show that the absurd using a verbal score as an
anchor for a math equating works well with these data for certain models. That
speaks to both the flexibility of the data, and the unrealistic nature of the
simulation..

The ino.st important lesson to be learned from this study is that equatings
using anchor test designs in which the old and new form populations differ in
ability can be improved if we can identify and properly use variables that describe
the self- selection process underlying test-taking behavior. Perhaps equating
research efforts should shift their focus towards attaining a better understanding of
how naturally-occurring test populations occur. We have many models for relating
test scores. Item response theory provides models for relating item sores to
proficiency. Ve need better models of test-selection behavior in order to improve
the quality of sow equatings.
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Table 1. Bias and Root Mean-Weighted Square Difference (RMWSD) for
Equated S :ores (on the College Board 200-to-800 Scale) Based on
Different Equating Methods in Representative Samples

Old Form
Sample

va 0.4

va 0.2

va 0.0

vb 0.4

vb 0.2

vb 0.0

ma 0.4

ma 0.2

ma 0.0

mb 0.4

mb 0.2

mb 0.0

Anchor

External Equating Test' Selection Variableb

Tucker

Chained
Frequency Equiper-
Estimation centile Levine Tucker

Frequency
Estimation

Bias -9.6 -9.0 -4.1 -1.7 -2.4 -2.9

RMWSD 10.5 9.9 6.3 2.8 3.3 3.7

Bias -3.8 -3.4 -1.3 -0.2 -0.6 -1.2

RMWSD 4.7 4.4 4.4 2.3 2.3 2.6

Bias -1.0 -0.9 -1.1 -1.0 -1.6 -1.6

RMWSD 2.4 1.8 2.7 2.4 2.8 1.9

Bia -5.8 -5.0 +0.9 +3.6 -0.6 -3.5

RMWSD 6.8 5.6 3.4 5.2 2.9 5.5

Bias +0.3 +0.5 +2.8 +3.7 +2.6 +1.7

RMWSD 3.5 3.1 4.4 4.3 3.8 3.5

Bias +2.0 +1.8 +1.9 +1.9 -0.1 -0.2

RMWSD 3.0 2.4 2.8 2.9 2.2 1.2

Bias -11.9 -11.1 -4.3 -0.5 -1.9 -1.5

RMWSD 12.2 11.7 5.1 3.6 4.8 5.0

Bias -6.9 -6.5 -3.7 -2.2 -1.3 -1.8

RMWSD 7.1 6.9 4.4 3.8 3.7 4.0

Bias -0.8 -0.8 -0.2 -0.2 -2.5 -3.0

RMWSD 1.9 1.8 1.9 1.8 3.0 3.6

Bias -9.0 -8.7 -1.3 +4.4 -6.0 -7.0

RMWSD 9.5 9.7 6.0 10.4 7.5 8.3

Bias -4.5 -4.4 -0.6 +1.7 -5.2 -6.1

RMWSD 4.9 5.5 2.7 4.9 6.4 8.0

Bias -1.3 -1.3 -1.0 -1.1 -3.1 -3.2

RMWSD 2.1 1.8 1.5 1.9 3.9 4.3

Note. The equipercentile equating in the full population was used as t.e
criterion equating.

'Data taken from Livingston, Dorans and Wright (1990)

bResultr. for Chained Equipercentile and Levine are excluded because they
were very large with RMWSD valued exceeding 50 in some cases.

r)
.r.d 0
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